UNITED FLEXBLE Fluoropolymer Hose, Tubing and Assemblies

UNITED FLEXIBLE

Your one source for all your flexible requirements:

Metal, composite and fluoropolymer hose, tubing, bellows and assemblies

The strengths of five flexible fluid control companies – US Hose Corp., AmniTec Ltd, AmniTec BV, Habia Teknofluor AB and Fulton Bellows LLC – are being combined into a new company and new brand called United Flexible. United Flexible manufactures and markets a wide range of metallic braided, composite and fluoropolymer hose and tubing, precision bellows and engineered assemblies.

The new United Flexible reflects our commitment to provide you solutions expertise, high-quality products and the premier customer service you expect. With your input, we're continuing to broaden our portfolio of products and assemblies for your diverse applications needs. To meet your evolving needs, United Flexible brings you deep expertise in gas and fluid transfer applications, plus collaborative engineering resources and unique manufacturing processes.

To see the full breadth of our product and assembly capabilities, we invite you to visit our new website at www.unitedflexible.com. There you'll find new product catalogs and the widest range of flexible fluid transport solutions we've ever offered.

Our Flexibility Is Your Strength.

John P-Devine Chief Executive United Flexible

UNITED FLE<mark></mark>XIBL

TABLE OF CO	NTENTS				
Description	Dama	Hose Burst Presure Range*			
Description	Page	PSI	BAR		
Smooth Bore Medium & High Pressure					
General Purpose	4	3600-12000	240-820		
Heavy Duty Single Braid	5	7000-12000	400-820		
Heavy Duty Double Braid	6	1500-18800	100-1300		
Fittings for General Purpose & Heavy Duty Hose	7-10				
Dense-Pac	11	12000-16000	825-1100		
Smooth Bore Extra High Pressure					
Ultra	12	24000	1655		
Multi-Braid	13	24000	1655		
Convoluted PTFE					
Easy Bend Open Pitch	14	400-7200	28-497		
Fittings for Easy Bend & Rubber Covered FEP	15-16				
Heavy Duty Easy Bend Flared	17	400-1700	28-117		
Smooth Bore Specialty Hose Products					
Rubber Covered FEP	18	700-2200	48-152		
Silicone Covered Smooth Bore Hose	19	6000-7000	414-483		
MTLC	20	360-2000	25-138		
Fluoropolymer Tubing					
Fluoropolymer Smooth Bore Tubing Capabilities	21-22				
Machined PTFE Parts					
Machined PTFE Parts	23				
Accessories					
Fluoropolymer Gas Hoses	24				
Standard PTFE fittings - Male	25				
Standard PTFE fittings - Female	26				
Compressed Gas Hose Assemblies & Accessories	27				
Protective Assembly Coverings	28				
Temperature Derating	29				
Chemical Resistance Data	30-33				
Notes	34-35				
Contact Information	Back Cover				

Chemical Resistance Inert to practically all commercial chemicals, acids, alcohols, coolants, elastomers, petroleum compounds, solvents, vinyls, synthetic lubricants, & hydraulic fluids.

Flex & Shock Resistance Not affected by continuous flexing, vibration, or impulse withstands alternating cold and heat cycling.

High Flow Rates Low coefficient of friction with anti-stick properties insures continuous lower pressure drop during service with a good pressure rating and full vacuum.

Light Weight Easier to move, handle, and install than rubber hose with a comparable burst pressure rating—ideal as pigtail in gas handling and pneumatic systems where dew point must be low.

Non-Adhesive Handles substances such as adhesives, asphalt, dyes, grease, glue, latex, lacquers, and paints—no carbon build up when used as a compressor discharge line.

Non-Contaminating Will not contaminate material, fluid or gas. PTFE is FDA compliant for food handling and is also a suitable choice for pharmaceutical applications.

Resists Deterioration Impervious to weather and can be stored for long periods without aging—will not age during service.

Steam Compatibility Absorbs no moisture—rated for steam to 250 psi (17 bar) and 406°F (208°C)—has low volumetric expansion characteristics—easy to clean and sterilize.

United Flexible offers engineered solutions that address vibration, thermal, or pressure-related problems as well as applications involving the transfer of liquids or gases. The hose and fittings included in this catalog are precisely manufactured and coupled to assure unequaled quality and immediate response to your needs.

Rapid quotation and delivery response to even the most difficult applications are our specialties. We stock and supply standard medium pressure, ultra high pressure, convoluted, smooth-bore, rubber-covered, and large bore fluoropolymer hoses with their associated fittings, adapters, and accessories.

This catalog includes our full product line of chemical transfer and smooth bore hoses as well as associated products.

* Working pressure is calculated at 1:4 burst pressure except Dense-Pac that is calculated 1:3 burst pressure.

General Purpose Smooth Bore PTFE

General Purpose Smooth Bore PTFE hose can be used to solve your demanding transfer challenges for liquids such as acids, solvents, fuels, adhesives, hydraulic fluid, hot oils and chemicals of all types. We can produce assemblies to your specific length and diameter needs to connect to your system. If you do not find the exact hose and fitting combination required for your service please contact our Customer Service. You can be assured our Engineering experts will be easy to talk to and focused on solving your problem.

Applications:	Industrial Equipment, Chemical, Transportation & Food Processing where temperature, pressure, flexing and purity are essential to the service.
Innercore:	Standard Wall PTFE ; Anti-static also available for conditions that can create static charges. Standard PTFE as well as anti-static tubes are fully FDA compliant. PTFE compliant with ISO 12086 Part 1.
Reinforcement:	One layer of type 304 stainless steel high tensile wire EN 1.4301
Temperature Range:	-60°C to +260°C (-76°F to +500°F)

Chemical Resistance: Refer to page 30.

Burst pressures are based on 70°F (21°C), for higher temperatures please refer to chart on page 29.

	IMPERIAL												
Dash Size	Inch Reference # Natural	Actual ID (in}	Tol (+/-) ID (in)	Actual OD (in)	Tol (+/-) OD (in)	Innercore Wall Thickness (in)	Max Working Pressure PSI	Min Burst Pressure PSI	Min Bend Radius (in)	Weight (lb/ft)			
-3	SBI0.12N	0.125	0.008	0.24	0.018	0.039	3000	12000	2.0	0.05			
-4	SBI0.19N	0.190	0.008	0.32	0.018	0.028	3000	12000	2.0	0.06			
-5	SBI0.25N	0.250	0.010	0.37	0.020	0.028	3000	12000	3.1	0.07			
-6	SBI0.32N	0.320	0.012	0.45	0.020	0.031	2500	10000	4.5	0.09			
-7	SBI0.37N	0.370	0.012	0.52	0.020	0.031	2250	9000	4.7	0.11			
-8	SBIO.41N	0.410	0.012	0.52	0.020	0.031	2000	8000	4.7	0.11			
-10	SBI0.5N	0.500	0.014	0.65	0.024	0.031	1750	7000	5.9	0.19			
-12	SBI0.62N	0.620	0.016	0.80	0.028	0.039	1500	6000	6.3	0.20			
-14	SBI0.77N	0.770	0.016	0.91	0.028	0.039	1100	4400	6.5	0.24			
-16	SBIO.87N	0.870	0.020	1.02	0.031	0.039	1000	4000	8.9	0.28			
-18	SBI1N	1.000	0.020	1.18	0.031	0.047	900	3600	9.8	0.34			

	METRIC												
Metric Reference # Natural	Actual ID (mm)	Tol (+/-) ID (mm)	Actual OD (mm)	Tol (+/-) OD (mm)	Innercore Wall Thickness (mm)	Max Working Pressure Bar	Min Burst Pressure Bar	Min Bend Radius (mm)	Weight (kg/m)				
SBM3.2N	3.2	0.20	6.2	0.45	1.00	240	960	40	0.08				
SBM5N	5.0	0.20	8.0	0.45	0.70	225	900	50	0.09				
SBM6.5N	6.5	0.25	9.5	0.50	0.70	205	820	80	0.10				
SBM8.2N	8.2	0.30	11.4	0.50	0.80	173	690	115	0.13				
SBM10N	10.0	0.30	13.2	0.50	0.80	138	550	120	0.16				
SBM13.4N	13.4	0.35	16.6	0.60	0.80	120	480	150	0.28				
SBM16.4N	16.4	0.40	20.2	0.70	1.00	103	410	160	0.30				
SBM19.6N	19.6	0.40	23.2	0.70	1.00	75	300	165	0.35				
SBM22.2N	22.2	0.50	26.0	0.80	1.00	63	250	225	0.42				
SBM26N	26.0	0.50	30.0	0.80	1.20	63	250	250	0.50				

Note: For anti-static type hose please consult factory for specifications.

Heavy Duty Smooth Bore PTFE Single Braid

This highly durable PTFE hose can be used to solve your demanding transfer challenges for liquids such as acids, solvents, fuels, adhesives, hydraulic fluid, hot oils and chemicals of all types. We can produce assemblies to your specific length and diameter needs to connect to your system. If you do not find the exact hose and fitting combination required for your service please contact our Customer Service. You can be assured our Engineering experts will be easy to talk to and focused on solving your problem.

Applications:	Industrial Equipment, Chemical, Transportation & Food Processing where temperature, pressure, flexing, purity and extreme durability are essential.
Innercore:	Heavy Wall PTFE ; Anti-static also available for conditions that can create static charges. Standard PTFE as well as anti-static tubes are fully FDA compliant. PTFE compliant with ISO 12086 Part 1. The heavier wall of this hose makes it more resistant to kinking and easier to install around obstacles.
Reinforcement:	One layer of type 304 stainless steel high tensile wire EN 1.4301
Temperature Range:	-60°C to +260°C (-76°F to +500°F)
Chemical Resistance:	Refer to page 30.
р. I I	

Burst pressures are based on 70°F (21°C); for higher temperatures please refer to chart on page 29.

	IMPERIAL												
Dash Size	Inch Reference # Natural	Actual ID (in)	Tol (+/-) ID (in)	Actual OD (in)	Innercore Wall Thickness (in)	Max Working Pressure PSI	Min Burst Pressure PSI	Min Bend Radius (in)	Weight (lb/ft)				
-3	HDSI0.12N	0.126	0.008	0.27	0.04	3000	12000	2.0	0.05				
-4	HDSI0.19N	0.197	0.008	0.34	0.04	3000	12000	2.0	0.08				
-5	HDSI0.2N	0.248	0.012	0.40	0.04	3000	12000	2.4	0.09				
-6	HDSI0.3N	0.315	0.012	0.46	0.04	2500	10000	3.9	0.13				
-8	HDSI0.4N	0.394	0.012	0.56	0.05	2250	9000	4.7	0.17				
-10	HDSI0.5N	0.512	0.016	0.68	0.05	1750	7000	5.3	0.22				
-12	HDSI0.6N	0.630	0.016	0.80	0.06	1500	6000	6.5	0.30				
-14	HDSI0.7N	0.772	0.016	0.94	0.06	1100	4400	7.5	0.35				
-16	HDSI0.8N	0.866	0.020	1.03	0.06	1000	4000	7.9	0.38				
-18	HDSI1.ON	1.004	0.020	1.17	0.06	900	3600	9.8	0.47				

	METRIC												
Metric Reference # Natural	Actual ID (mm)	Tol (+/-) ID (mm)	Actual OD (mm)	Innercore Wall Thickness (mm)	Max Working Pressure Bar	Min Burst Pressure Bar	Min Bend Radius (mm)	Weight (kg/m)					
HDSM3.2N	3.2	0.20	6.9	1.00	300	1200	50	0.08					
HDSM5N	5.0	0.20	8.7	1.00	250	1000	50	0.12					
HDSM6.2N	6.3	0.30	10.2	1.00	230	920	60	0.14					
HDSM8N	8.0	0.30	11.7	1.00	200	800	100	0.19					
HDSM10N	10.0	0.30	14.2	1.30	175	700	120	0.25					
HDSM13N	13.0	0.40	17.2	1.30	150	600	135	0.32					
HDSM16N	16.0	0.40	20.2	1.50	125	500	165	0.44					
HDSM19N	19.6	0.40	23.8	1.50	100	400	190	0.52					
HDSM22N	22.0	0.50	26.2	1.50	100	400	200	0.56					
HDSM25N	25.5	0.50	29.7	1.50	80	320	250	0.70					

Note: For anti-static type hose please consult factory for specifications.

Heavy Duty Smooth Bore PTFE Double Braid

This highly durable PTFE hose can be used to solve your demanding transfer challenges for liquids such as acids, solvents, fuels, adhesives, hydraulic fluid, hot oils and chemicals of all types. We can produce assemblies to your specific length and diameter needs to connect to your system. If you do not find the exact hose and fitting combination required for your service please contact our Customer Service. You can be assured our Engineering experts will be easy to talk to and focused on solving your problem.

- Applications: Industrial Equipment, Chemical, Transportation & Food Processing where temperature, pressure, flexing, purity and extreme durability are essential.
- Innercore: Heavy Wall PTFE ; Anti-static also available for conditions that can create static charges. Standard PTFE as well as anti-static tubes are fully FDA compliant. PTFE compliant with ISO 12086 Part 1. The heavier wall of this hose makes it more resistant to kinking and over-bending.

Reinforcement: Two layers of type 304 stainless steel high tensile wire EN 1.4301

Temperature Range: -60°C to +260°C (-76°F to +500°F)

Chemical Resistance: Refer to page 30.

Burst pressures are based on 70°F (21°C), for higher temperatures please refer to page 29.

	IMPERIAL												
Dash Size	Inch Reference # Natural	Actual ID (in)	Tol (+/-) ID (in)	Actual OD (in)	Innercore Wall Thickness (in)	Max Working Pressure PSI	Min Burst Pressure PSI	Min Bend Radius (in)	Weight (lb/ft)				
-3	HDDIO.12N	0.126	0.008	0.33	0.04	5076	20306	2.0	0.09				
-4	HDDIO.19N	0.197	0.008	0.40	0.04	4714	18855	2.0	0.14				
-5	HDDIO.24N	0.244	0.008	0.45	0.04	4351	17405	2.4	0.16				
-6	HDDIO.31N	0.315	0.012	0.52	0.04	3916	15664	3.9	0.23				
-8	HDDIO.39N	0.394	0.012	0.62	0.05	3336	13344	4.7	0.30				
-10	HDDIO.5N	0.512	0.016	0.74	0.05	2756	11023	5.3	0.36				
-12	HDDIO.62N	0.630	0.016	0.85	0.06	2357	9428	6.5	0.30				
-14	HDDIO.77N	0.772	0.016	1.00	0.06	1813	7252	2.0	0.56				
-16	HDDIO.86N	0.866	0.020	1.09	0.06	1250	5000	7.9	0.54				
-18	HDDI1.00N	1.004	0.020	1.23	0.06	1450	5802	2.0	0.81				
-20	HDDI1.13N	1.142	0.020	1.39	0.06	1000	4000	11.8	0.79				

	METRIC											
Metric Reference # Natural	Actual ID (mm)	Tol (+/-) ID (mm)	Actual OD (mm)	Innercore Wall Thickness (mm)	Max Working Pressure Bar	Min Burst Pressure Bar	Min Bend Radius (mm)	Weight (kg/m)				
HDDM3.2N	3.2	0.20	8.4	1.00	350	1400	50	0.14				
HDDM5N	5.0	0.20	10.2	1.00	325	1300	50	0.21				
HDDM6.2N	6.2	0.20	11.4	1.00	300	1200	60	0.24				
HDDM8N	8.0	0.30	13.2	1.00	270	1080	100	0.34				
HDDM10N	10.0	0.30	15.7	1.30	230	920	120	0.44				
HDDM13N	13.0	0.40	18.7	1.30	190	760	135	0.53				
HDDM16N	16.0	0.40	21.7	1.50	163	650	165	0.45				
HDDM19.6N	19.6	0.40	25.5	1.50	125	500	190	0.84				
HDDM22N	22.0	0.50	27.7	1.50	113	450	200	0.80				
HDDM25N	25.5	0.50	31.2	1.50	100	400	250	1.20				
HDDM29N	29.0	0.50	35.2	1.50	90	360	300	1.18				

Note: For anti-static type hose please consult factory for specifications.

Fittings: Smooth Bore Fluoropolymer Hose

General Purpose, Heavy Duty Single & Double Braid

United Flexible manufactures and stocks over 500 sizes and styles of fittings. Our goal is to ensure rapid delivery of assemblies to you in as short a time as possible. Alloys that we stock are brass, stainless and carbon steel or combinations if preferred. In addition we have the capability to produce fittings in other alloys for highly corrosive applications. **We will manufacture custom fittings to your specifications.** Contact our customer service department for more information on this service.

Permanent Crimp Fittings

Male Pipe Brass

Male	Male Pipe Fittings-Brass						
Reference #	Description-Hose Size						
0304TW	MNPT (1⁄8-27)-4						
0504TW	MNPT (1⁄4-18)-4						
0505TW	MNPT (1⁄4-18)-5						
0306TW	MNPT (1⁄4-18)-6						
0506TW	MNPT (³⁄8-18)-6						
0308TW	MNPT (¾-18)-8						
0508TW	MNPT (1/2-14)-8						
0510TW	MNPT (1/2-14)-10						
0512TW	MNPT (3⁄4-14)-12						
0516TW	MNPT (1-111/2)-16						
0516Z	MNPT (1-111⁄2)-16Z						

Male Pipe Stainless

Male Pip	e Fittings-303 Stainless
Reference #	Description-Hose Size
1704TW	MNPT (1⁄18-27)-4
2004TW	MNPT (1⁄4-18)-4
2005TW	MNPT (1⁄4-18)-5
1705TW	MNPT (1⁄8-27)-5
1706TW	MNPT (1⁄4-18)-6
2006TW	MNPT (¾-18)-6
1708TW	MNPT (¾-18)-8
2008TW	MNPT (1⁄2-14)-8
2010TW	MNPT (1/2-14)-10
2012TW	MNPT (¾-14)-12
2016TW	MNPT (1-11.5)-16
2016Z	MNPT (1-111⁄2)-16Z
2020Z	MNPT (11⁄4-111⁄2)-20Z

Male Pipe Carbon

Male Pi	pe Fittings-Carbon Steel
Reference #	Description-Hose Size
0904TW	MNPT (1⁄8-27)-4
1004TW	MNPT (1⁄4-18)-4
1005TW	MNPT (1⁄4-18)-5
0905TW	MNPT (1⁄8-27)-5
0906TW	MNPT (1⁄4-18)-6
1006TW	MNPT (3⁄8-18)-6
0908TW	MNPT (³⁄8-18)-8
1008TW	MNPT (1⁄2-14)-8
1010TW	MNPT (1⁄2-14)-10
1012TW	MNPT (¾-14)-12
1016TW	MNPT (1-111/2)-16
1016Z	MNPT (1-111/2)-16Z
1020Z	MNPT (11⁄4-111⁄2)-20Z

316 Stainless Steel also available

Female Swivel Brass

Reference #	Description-Hose Size
3504TW .	JIC/SAE SWIVEL (7⁄16-20)-4
3505TW .	JIC/SAE SWIVEL (1/2-20)-5
3506TW .	JIC (%16-18)-6
3606TW	SAE SWIVEL (5⁄18-18)-6
3508TW .	JIC/SAE SWIVEL (3⁄4-16)-8
3510TW .	JIC/SAE SWIVEL (7⁄8-14)-10
3512TW .	JIC (11⁄16-12)-12
3612TW	SAE SWIVEL (11⁄16-14)-12
3516TW .	JIC (15⁄16-12)-16
3516Z .	JIC (15⁄16-12)-16Z

Female Swivel Stainless

JIC Swivel Fittings-303 Stainless				
Reference #	Description-Hose Size			
4003TW	37 JIC SWIVEL (3/8-24)-3			
4303TW	37 JIC SWIVEL (7/16-20)-3			
4004TW	37 JIC SWIVEL (7⁄16-20)-4			
3905TW	37 JIC SWIVEL (7/16-20)-5			
4005TW	37 JIC SWIVEL (1/2-20)-5			
4006TW	37 JIC SWIVEL (%16-18)-6			
4008TW	37 JIC SWIVEL (3⁄4-16)-8			
4010TW	37 JIC SWIVEL (7⁄8-14)-10			
4012TW	37 JIC SWIVEL (11⁄16-12)-12			
4016TW	37 JIC SWIVEL (15⁄16-12)-16			
4016Z	37 JIC SWIVEL (15⁄16-12)-16Z			
4020Z	37 JIC SWIVEL (15/8-12)-20Z			

Female Swivel Carbon

JIC Swivel Fittings-Carbon Steel		
Reference #	Description-Hose Size	
3004TW	37 JIC SWIVEL (7/16-20)-4	
2905TW	37 JIC SWIVEL (7/16-20)-5	
3005TW	37 JIC SWIVEL (1/2-20)-5	
3006TW	37 JIC SWIVEL (%16-18)-6	
3007TW	37 JIC SWIVEL (%16-18)-7N	
3008TW	37 JIC SWIVEL (3⁄4-16)-8	
3010TW	37 JIC SWIVEL (7⁄8-14)-10	
3012TW	37 JIC SWIVEL (11/16-12)-12	
3016TW	37 JIC SWIVEL (15⁄16-12)-16	
3016Z	37 JIC SWIVEL (1⁵⁄16-12)-16Z	
3020Z	37 JIC SWIVEL (15⁄8-12)-20Z	
3206TW	SAE SWIVEL (5⁄8-18)-6	
3212TW	SAE SWIVEL (11⁄16-14)-12	

UNITED FLE<mark></mark>XIBLE

Special Application Fittings: General Purpose and Heavy Duty Single Braid PTFE Hose.

Tube End Fitting Stainless

Tube End Fittings-316 Stainless		
Reference #	Description-Hose Size	
4804TW	1⁄4 OD Tube End-4	
4806TW	V 3⁄8 OD Tube End-6	
4808TW	1⁄2 OD Tube End-8	
4812TW	3⁄4 OD Tube End-12	

Brass Female Pipe

Brass Female Pipe		
Hose Size	e Size Reference # Thread	
-5	0405TW	1⁄4-18

Stainless Female Pipe

Stainless Female Pipe		
Hose Size	Reference #	Thread
-5	2405TW	1⁄4-18

Power Trim Fittings

Male Inverted Flare –Stainless Steel			
Description	Hose Size	Reference #	Thread Size
Power Trim 45°	-4	PT-45-4	³ ⁄8-24
Power Trim 90°	-4	PT-90-4	³ ⁄8-24
Power Trim Straight	-4	PT-S-4	³∕8-24

Power Trim fittings are available in 304 Stainless Steel.

Developed for high tolerance military and aerospace ground support connections. Assemblies with AN class 3B fittings can be built with General Purpose or Heavy Duty Single Braid smooth bore PTFE hose. We can also provide AN fittings with tie wire holes.

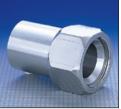
NPSM 1/4 Inch Swivel

Female Pipe Fittings-Carbon Steel			
Description	Hose Size	Reference #	Thread Size
Paint Spray Swivel	-5	1505TW	1⁄4-18

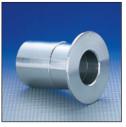
Paint Spray Swivel available in Carbon Steel.

Female AN Stainless Swivel

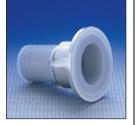
Tennule 5	Teniule Swiver Alt Titligs Cluss SD		
Hose Size	Reference #	Thread	
-4	4004N-AN	7⁄16-20	
-6	4006N-AN	9⁄16-18	
-8	4008N-AN	³ ⁄4-16	
-12	4012N-AN	¹¹ ⁄16-]2	
-16	4016N-AN	¹⁵ ⁄16-]2	


'ED FLE<mark>»</mark>Xirie

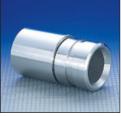
True Bore Hose Fittings: General Purpose Hose


Male NPT		
Hose Size ID (inch)	316 SS Male NPT	Carbon Stee Male NPT
.50	2008L	1008L
.75	2012L	1012L
1.00	2016L	1016L

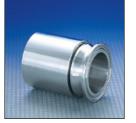
Female JIC


	Female JIC	
Hose Size ID (inch)	316 SS Female JIC	Carbon Steel Female JIC
.50	4008L	3008L
.75	4012L	3012L
1.00	4016L	3016L

SS Flange Retainer


SS Flange Retainer		
Hose Size ID (inch)	SS Flange Retainer	
.50	5008L	
.75	5012L	
1.00	5016L	

PFA Flange Retainer


PFA Flang	e Retainer
Hose Size ID (inch)	PFA Flange Retainer
.50	NA
.75	6012
1.00	6016

Butt Weld


Butt Weld							
Hose Size ID (inch)	Butt Weld						
.50	NA						
.75	NA						
1.00	9116L						

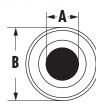
Tri Clamp Sanitary

Tri Clamp Sanitary							
Hose Size ID (inch)	Tri Clamp Sanitary						
.50	NA						
.75	7312L						
1.00	7316L						

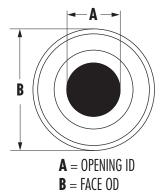
Tri Clamp Mini-Sanitary

Tri Clamp M	ini-Sanitary
Hose Size ID (inch)	Tri Clamp Mini-Sanitary
.50	7108L
.75	7112L
1.00	NA

Compre	ession	Tube	Enc



Compression Tube End								
Compression Tube End								
4808L								
4812L								
4816L								


Butt	Weld
Hose Size ID (inch)	Butt Weld
.50	NA
.75	NA
1.00	9116L

For stainless all wetted surfaces are 316SS, crimp collars are either 304SS or carbon steel NA Not Available from stock.

Tri Clamp Sanitary Fitting Specifications

Mini Sanitary						
Size	A	В				
1/2	0.375	0.984				
3⁄4	0.625	0.984				

Standard Sanitary								
Size	А	В	Bore Thru					
1/2	0.875	1.984	0.375					
3⁄4	0.875	1.984	0.609					
1	0.875	1.984	0.844					
11/2	1.375	1.984	1.312					
2	1.870	2.5	1.75					
3	2.875	3.576	2.73					

37° JIC to NPT Pipe Thread Adapters

Adapters are available in brass, carbon steel, and 300 Series Stainless Steel. Additional adapters are available-consult the factory for details.

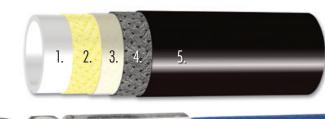
37° JIC to NPT Pipe Thread Adapters									
Pipe Thread	JIC Straight Thread	JIC Dash Size			<u>í</u>				
			Male Adapter Part	Male 90 Elbow Part	Male 45 Elbow Part	Female Adapter Part	Female 90 Elbow Part		
1⁄8-20	³ ⁄8-24	3	1003-1	9003-1	4503-1	1003-1F	9003-1F		
1⁄8-27	7⁄16-20	4	1004-1	9004-1	4504-1	1004-1F	9004-1F		
1⁄4-18	7⁄16-20	4	1004-2	9004-2	4504-2	1004-2F	9004-2F		
³ ⁄8-18	7⁄16-20	4	1004-3	9004-3	4504-3	1004-3F	9004-3F		
1⁄8-27	1⁄2-20	5	1005-1	9005-1	4505-1	1005-1F	9005-1F		
1⁄4-18	1⁄2-20	5	1005	9005	4505	1005-F	9005-F		
³ ⁄8-18	1⁄2-20	5	1005-2	9005-2	4505-2	1005-2F	9005-2F		
1⁄4-18	9⁄16-18	6	1006-1	9006-1	4506-1	1006-1F	9006-1F		
³ ⁄8-18	9⁄16-18	6	1006-2	9006-2	4506-2	1006-2F	9006-2F		
1⁄2-14	9⁄16-18	6	1006-3	9006-3	4506-3	1006-3F	9006-3F		
1⁄4-18	³ ⁄4-16	8	1008	9008	4508	1008-F	9008-F		
³ ⁄8-18	³ ⁄4-16	8	1008-1	9008-1	4508-1	1008-1F	9008-1F		
1⁄2-14	3⁄4-16	8	1008-2	9008-2	4508-2	1008-2F	9008-2F		
3⁄4-14	3⁄4-16	8	1008-3	9008-3	4508-3	1008-3F	9008-3F		
³ ⁄8-18	7⁄8-14	10	1010-1	9010-1	4510-1	1010-1F	9010-1F		
1⁄2-14	7⁄8-14	10	1010	9010	4510	1010-F	9010-F		
³ ⁄4-14	7⁄8-14	10	1010-2	9010-2	4510-2	1010-2F	9010-2F		
1⁄2-14	11⁄16-12	12	1012-1	9012-1	4512-1	1012-1F	9012-1F		
3⁄4-14	11⁄16 -12	12	1012	9012	4512	1012-F	9012-F		
1-111/2	11⁄16-12	12	1012-2	9012-2	4512-2	1012-2F	9012-2F		
³ ⁄4-14	15⁄16-12	16	1016-1	9016-1	4516-1	1016-1F	9016-1F		
1-111/2	15⁄16-12	16	1016	9016	4516	1016-F	9016-F		
11/4-111/2	15⁄16-12	16	1016-2	9016-2	4516-2	1016-2F	9016-2F		
1-111/2	15⁄8-12	20	1020-1	9020-1	4520-1	1020-1F	9020-1F		
11⁄4-111⁄2	15⁄8-12	20	1020	9020	4520	1020-F	9020-F		
11/2-111/2	15⁄8-12	20	1020-2	9020-2	4520-2	1020-2F	9020-2F		
11/2-111/2	17⁄8-12	24	1024	9024	4524	1024-F	9024-F		
2-111/2	21⁄2-12	32	1032	9032	4532	1032-F	9032-F		

Prefix Part Number B for Brass, C for Carbon Steel, and S for 300 Series Stainless Steel. Please consult the factory for additional sizes, shapes, and materials.

Dense-Pac High Pressure Hose

High Pressure Dense-Pac PTFE hose is ideal for chemicals, hydraulic fluids, epoxies, sealants, adhesives and compressed gases. We can produce assemblies to your specific length and diameter needs to connect to your system. If you do not find the exact hose and fitting combination required for your service please contact our Customer Service. You can be assured our Engineering experts will be easy to talk to and focused on solving your problem.

Applications:	High temperature hydraulics (phosphate-ester based) in steel mills, plastics reaction injection molding (RIM), heated hose dispensing hot-melts and high pressure gas and oxygen transfer.
Innercore:	Heavy Wall PTFE fully Anti-static innercore to eliminate potential dangerous build-up of static charges (see Technical Bulletin). FDA compliant. PTFE compliant with ISO 12086 Part 1. Dense-Pac assemblies are manufactured with either a post-sintered PTFE core for gas and pneumatic service or a non post-sintered PTFE innercore for transferring liquids which provides lower cost without sacrificing performance.
Reinforcement:	Exterior braid is constructed with multiple wires twisted together to form a lighter-weight more flexible high pressure hose. Sizes .22 (5.6mm) to .50 (12.6mm) ID have a single layer of type 304 stainless steel high tensile wire EN 1.4301 and sizes .62 (15.7mm) to 1.38 (34.9mm) have two layers of braid.
Temperature Range:	-65°F (-54°C) to +500°F (+260°C)
Chemical Resistance:	Refer to page 30.
Fittings:	Female JICs in type 300 series stainless steel.


	IMPERIAL											
Dash Size	Inch Reference # Non Post-Sintered	Inch Reference # Sintered	Actual ID (in)	Tol (+/-) ID (in)	Actual OD (in)	Tol (+/-) OD (in)	Innercore Wall Thickness (in)	Max Working Pressure PSI	Test Pressure PSI	Min Burst Pressure PSI	Min Bend Radius (in)	Weight (lb/ft)
-4	DPNI.22	DPSI.22	0.22	0.010	0.38	0.015	0.041	5000	10,000	16,000	1.5	0.10
-6	DPNI.31	DPSI.31	0.31	0.010	0.49	0.015	0.041	5000	10,000	16,000	2.5	0.16
-8	DPNI.40	DPSI.40	0.40	0.010	0.61	0.018	0.046	5000	10,000	16,000	2.9	0.23
-10	DPNI.50	DPSI.50	0.50	0.010	0.72	0.018	0.051	5000	10,000	16,000	3.3	0.32
-12	DPNI.62	DPSI.62	0.62	0.015	0.97	0.020	0.051	5000	10,000	16,000	4	0.66
-16	DPNI.87	DPSI.87	0.87	0.015	1.26	0.020	0.051	5000	10,000	16,000	5	1.02
-20	DPNI1.12	DPSI1.12	1.12	0.025	1.65	0.040	0.071	5000	10,000	16,000	12	1.85
-24	DPNI1.380	DPSI1.380	1.38	0.025	1.90	0.040	0.071	4000	8,000	12,000	14	1.91

	METRIC										
Metric Reference # Non Post-Sintered	Metric Reference # Sintered	Actual ID (mm)	Tol (+/-) ID (mm)	Actual OD (mm)	Tol (+/-) OD (mm)	Innercore Wall Thickness (mm)	Max Working Pressure Bar	Test Pressure Bar	Min Burst Pressure Bar	Min Bend Radius (mm)	Weight (kg/m)
DPNM5.6C	DPSM5.6C	5.6	0.25	9.7	0.38	1.03	340	690	1100	38	0.14
DPNM7.8C	DPSM7.8C	7.8	0.25	12.5	0.38	1.03	340	690	1100	64	0.24
DPNM10.C	DPSM10.C	10.2	0.25	15.5	0.44	1.17	340	690	1100	74	0.34
DPNM12.C	DPSM12.C	12.6	0.25	18.3	0.46	1.30	340	690	1100	84	0.47
DPNM15.C	DPSM15.C	15.7	0.38	24.6	0.51	1.30	340	690	1100	102	0.98
DPNM22.C	DPSM22.C	22.0	0.38	32.0	0.51	1.30	340	690	1100	127	1.50
DPNM28.C	DPSM28.C	28.6	0.64	41.9	1.02	1.80	340	690	1100	305	2.75
DPNM34.C	DPSM34.C	34.9	0.64	48.3	1.02	1.80	275	315	825	356	2.84

*Minimum burst pressures calculated at 70°F (21°C). Non-impulse applications. For impulse applications, working pressure is 3000 PSI (207 Bar). High temperature pressures calculated at 400°F (205°C): working pressure drops to 3000 PSI (207 Bar). Please contact the factory. For gas and air applications specify DP post-sintered only.

Ultra Extra High Pressure Hose

Ultra High Pressure hose is ideal for high pressure gas and liquid applications that use natural non conductive innercores. We can produce the longest high pressure hose Fluoropolymer assemblies in the industry to any custom length required for your system. If you do not find the exact hose and fitting combination required for your service please contact our Customer Service. You can be assured our Engineering experts will be easy to talk to and focused on solving your problem.

Basic Design

- 1. PFA or ETFE Inner Tubing
- 2. Kevlar Braid
- 3. Interlayer PTFE Tape
- 4. Stainless Steel Braid
- 5. Hytrel Jacket (optional)

 Applications:
 Ultra is ideal for inert gas applications and liquids requiring FDA compliance. Examples of applications included compressed gas cylinder filling, spray dryers in milk powder production and replacement of rigid high pressure stainless steel tubing or corrugated metal hose in long lengths. We are able to couple up to 150 feet (46m) continuous lengths with no splices.

 Innercore:
 Fluoropolymer innercores of non-conductive ETFE or PFA that are fully FDA compliant. PFA and ETFE innercores for gas and pneumatic service; these Fluoropolymers unlike PTFE do not require any post sintering.

 Reinforcement:
 Ultra incorporates the use of one braided layer of high tensile aramid fiber and one layer of stainless steel. This value engineered construction reduces weight and improves bend radius while increasing burst pressure. An integral abrasion resistant Hytrel jacket protects the exterior braid and has a smooth finished appearance.

Temperature Range: Without Hytrel Cover -65°F (54°C) to +500°F (260°C) With Hytrel Cover -20°F (-29°C) to +180°F (82°C)

Chemical Resistance: Refer to page 30.

	IMPERIAL								
Dash Size	PFA Inch Reference # Natural	ETFE Inch Reference # Natural	Actual ID (in)	Actual OD (in)	Innercore Wall Thickness (in)	Max Working Pressure PSI	Min Burst Pressure PSI	Min Bend Radius (in)	Weight (lb/ft)
-4	ULPID.22N	ULEID.22N	0.220	0.460	0.039	6000	24000	1.0	0.11
-6	ULPID.31N	ULEID.31N	0.315	0.551	0.039	6000	24000	2.0	0.33
-8	ULPIT.39N	ULEIT.39N	0.394	0.748	0.049	6000	24000	2.3	0.35

			l	METRIC				
PFA	ETFE	ا مدينة	ا مدينة		Max	Min	Min	Wainht
Metric Reference #	Metric Reference #	Actual ID (mm)	Actual OD (mm)	Wall Thickness	Working Pressure	Burst Pressure	Bend Radius	Weight (kg/m)
Natural	Natural			(mm)	Bar	Bar	(mm)	(Kg/ 111/
ULPMD5N	ULEMD5.1N	5.0	9.7	1.00	300	1200	25	0.16
ULPMD6.5N	ULEMD6.5N	6.5	13.0	1.00	415	1660	25	0.23
ULPMT6.5N	ULEMT6.5N	6.5	16.0	1.00	475	1900	25	0.31
ULPMD8N	ULEMD8N	8.0	14.0	1.00	320	1280	50	0.49
ULPMD10N	ULEMD10N	10.0	18.0	1.25	320	1280	58	0.38
ULPMT10N	ULEMT10N	10.0	19.0	1.25	415	1660	58	0.52
ULPMD13N	ULEMD13N	13.0	19.0	1.25	320	1280	75	0.79

Minimum burst pressures are based on 70°F (21°C). For high temperatures please consult the factory.

Multi-Braid Extra High Pressure Hose

Multi-Braid High Pressure PTFE hose is ideal for chemicals, hydraulic fluids, epoxies, sealants, adhesives and compressed gases. We can produce assemblies to your specific length and diameter needs to connect to your system. If you do not find the exact hose and fitting combination required for your service please contact our Customer Service. You can be assured our Engineering experts will be easy to talk to and focused on solving your problem.

Applications:	Multi-Braid Series excels at in high temperature and high impulse service conditions. High temperature or extreme impulse hydraulics, plastics reaction injection molding (RIM), heated hose, high pressure gas and oxygen transfer, liquids and chemicals.
Innercore:	Heavy Wall PTFE fully Anti-static innercore to eliminate potential dangerous build-up of static charges (see Technical Bulletin). FDA compliant. PTFE compliant with ISO 12086 Part 1. Multi-Braid series assemblies are manufactured with a post-sintered PTFE core for gas and pneumatic service to minimize effusion.
Reinforcement:	Exterior braid is constructed with multiple layers of alternating spiral wrap and braid of type 304 stainless steel high tensile wire EN 1.4301
Temperature Range:	-65°F (-54°C) to +500°F (+260°C)
Chemical Resistance:	Refer to page 30.
Fittings:	Female JICs in type 300 series stainless steel. Fixed 1/4" female NPT and 1/4" male NPT available for -4 size.

	IMPERIAL									
Dash Size	Inch Reference # Sintered	Actual ID (in)	Tol (+/-) ID (in)	Actual OD (in)	Tol (+/-) OD (in)	Innercore Wall Thickness (in)	Max Workin Pressur PSI		t Bend	Weight (lb/ft)
-4	ULPTIO.2C	0.23	0.005	0.48	0.010	0.041	6000	2400	0 3.0	0.24
-6	ULPTI0.3C	0.30	0.008	0.59	0.012	0.041	6000	2400	0 5.0	0.40
-8	ULPTIO.4C	0.40	0.010	0.73	0.013	0.051	6000	2400	0 5.7	0.49
	METRIC									
Metric	Actual	$T_{ol}(\cdot, \cdot)$	Actual				ax	Min	Min	Woight

	Reference # Sintered	Actual ID (mm)	Tol (+/-) ID (mm)	Actual OD (mm)	Tol (+/-) OD (mm)	Wall Thickness (mm)	Working Pressure Bar	Burst Pressure Bar	Bend Radius (mm)	Weight (kg/m)
ſ	ULPTM5.8C	5.8	0.13	12.3	0.25	1.00	414	1655	76	0.35
	ULPTM7.6C	7.7	0.19	15.1	0.29	1.00	414	1655	127	0.59
[ULPTM10.6C	10.2	0.25	18.6	0.32	1.30	414	1655	146	0.72

Minimum burst pressures are based on 70°F (21°C). For high temperatures please consult the factory.

Easy Bend Open Pitch Convoluted Hose

Easy Bend PTFE hose is ideal for solvents, acids, caustics, fuels, lubricants, hot water, air and transfer conditions at elevated temperatures. Convoluted PTFE innercore is recommended for installations where extremely tight bend radius is required for routing. We can produce assemblies to your specific length and diameter needs to connect to your system. If you do not find the exact hose and fitting combination required for your service please contact our Customer Service. You can be assured our Engineering experts will be easy to talk to and focused on solving your problem.

777	and the second
	A V V V

Applications: Gas turbines, air compressors, tank truck, pulp and paper, transporation, plastic and rubber forming and curing.

PTFE non-conductive and fully Anti-static innercores to eliminate potential dangerous build-up of static charges Innercore: (see Technical Bulletin). FDA compliant. PTFE compliant with ISO 12086 Part 1. Helical profile design aids in self draining.

Reinforcement: One layer of type 304 stainless steel high tensile wire EN 1.4301 Type 316SS braid reinforcement available upon request. Three inch internal diameter also available with double braid for increased working pressure.

-65°F (-54°C) to +500°F (+260°C) **Temperature Range:**

Chemical Resistance:

Refer to page 30.

	IMPERIAL								
Dash Size	Inch Reference # Natural	Inch Reference # Conductive	Actual ID (in)	Actual OD (in)	Max Working Pressure PSI	Min Burst Pressure PSI	Min Bend Radius (in)	Weight (lb/ft)	
-4	EBI.25N	EBI.25C	0.236	0.42	2175	8700	0.7	0.09	
-6	EBI.37N	EBI.37C	0.382	0.65	1595	6380	0.8	0.12	
-8	EBI.5N	EBI.5C	0.512	0.75	1450	5800	1.0	0.19	
-12	EBI.75N	EBI.75C	0.772	1.02	900	3600	2.6	0.24	
-16	EBI1N	EBI1C	0.961	1.33	1000	4000	3.5	0.41	
-20	EBI1.25N	EBI1.25C	1.280	1.59	875	3500	4.3	0.46	
-24	EBI1.5N	EBI1.5C	1.500	1.89	700	2800	2.0	0.58	
-32	EBI2N	EBI2C	2.000	2.38	500	2000	2.4	0.98	
-48	EBI3N	EBI3C	3.000	4.00	250	1000	3.9	2.10	
-48Z	EBI3NB2	EBI3CB2	3.000	4.95	100	400	4.7	2.90	

Μ	ΕT	D	

	MEIRIN							
Metric Reference # Natural	Metric Reference # Conductive	Actual ID (mm)	Actual OD (mm)	Max Working Pressure Bar	Min Burst Pressure Bar	Min Bend Radius (mm)	Weight (kg/m)	
EBM6.7N	EBM6.7C	6.0	10.6	150	600	18	0.13	
EBM8.5N	EBM8.5	7.9	14.0	125	500	19	0.15	
EBM9.8N	EBM9.8	9.7	16.4	110	440	20	0.18	
EBM13.6N	EBM13.6	13.0	19.0	100	400	25	0.29	
EBM16N	EBM16	15.5	22.6	70	280	50	0.31	
EBM19.1N	EBM19.1	19.6	26.0	63	250	65	0.36	
EBM25.6N	EBM25.6	24.4	33.7	40	160	90	0.61	
EBM31.7N	EBM31.7	32.5	40.3	30	120	110	0.68	
EBM38.1N	EBM38.1	38.1	48.0	48	193	115	0.86	
EBM50.8N	EBM50.8	50.8	60.5	35	138	127	1.46	
EBM74N	EBM74	74.0	101.6	17	69	406	4.30	
EBM100N	EBM100	100.0	125.7	7	28	457	4.60	

All pressures calculated at 70°F (21°C). Consult factory for vacuum ratings and service conditions at elevated temperatures.

Fittings For Easy Bend Open Pitch PTFE Convoluted & Rubber Covered FEP Hose


Threaded Fittings

United Flexible manufactures and inventories over 500 sizes and styles of fittings. Fitting materials consist of carbon steel, stainless steel, combination, and polypropylene. We will manufacture custom fittings to your specifications. Contact our customer service department for more information about this service.

Male Pipe Hex

Male Pipe Hex						
Reference #	Fitting Material					
10	Carbon Steel					
20	Stainless Steel					

Female JIC 37°

Female JIC 37°				
Reference #	Fitting Material			
30	Carbon Steel			
40	Stainless Steel			

For Special Fittings - Please consult the factory for pricing and availability.

Butt Weld/Victaulic**

Butt Weld/Victaulic**							
Fitting Material							
Stainless Steel							

**Pipe is standard, tube available. Please specify.

I-Line Fittings

- Tank

Female I-Line

Fo	emale I-Line
Reference #	Fitting Material
99	Stainless Steel

Sanitary

Bevel Seat Sanitary

Other sanitary fittings available - contact the factory for additional fitting information.

Mini Sanitary

 Reference #
 Fitting Material

 71
 Stainless Steel

UNITED FLEXIBLE

Fittings For Easy Bend Open Pitch PTFE Convoluted & Rubber Covered FEP Hose

Cam & Groove

Polypropylene Fittings

Polypropylene fittings have a pressure rating of 120 PSI (8.3 bar) and temperature rating of up to 180°F (82°C).

UNITED FLEXIBL

Heavy Duty Easy Bend Flared Hose • Jack-Flex

Heavy Duty Easy Bend Flared Hose is ideal for applications where internal corrosion of the fittings and contamination of the chemical substrate is not tolerable. We can produce assemblies to your specific length and diameter needs to connect to your system. The entire wetted flow path is inert PTFE Fluoropolymer so you can have a long lasting transfer hose solution.

Applications:	Chemical and Pharmaceutical
Innercore:	Heavy duty convoluted PTFE liner that
	is FDA compliant and chemically inert
	to a wide range of acids and caustics. The PTFE liner is made to last with a heavy wall construction that provides more hoop strength and resistance to
	kinking during flexing.
Reinforcement:	One layer of type 304 stainless steel high tensile wire EN 1.4301 Type 316SS braid reinforcement available upon request. Three inch internal diameter also available with double braid for increased working pressure.
Temperature Range:	-65°F (-54°C) to to +500°F (+260°C)
Chemical Resistance:	Refer to page 30.
Fittings:	PTFE flare over stainless steel flange retainer with your choice of backing flange. Backing flanges can be provided

PTFE flare over stainless steel flange retainer with your choice of backing flange. Backing flanges can be provided to meet various standards. Typical flange alloys are carbon steel, 304 and 316 stainless steel.

		·		IMPERIA	L			
Dash Size)	Inch Reference # Natural	Inch Reference # Conductive	Actual ID (in)	Actual OD (in)	Max Working Pressure PSI	Min Burst Pressure PSI	Min Bend Radius (in)	Weight (lb/ft)
-12	HDFI0.7N	HDFI0.7C	0.78	1.08	425	1700	3.0	3.0
-16	HDFI0.9N	HDFI0.9C	0.97	1.36	350	1400	4.0	4.0
-20	HDFI1.3N	HDFI1.3C	1.32	1.70	330	1350	5.5	5.5
-24	HDFI1.4N	HDFI1.4C	1.49	1.85	275	1100	7.0	7.0
-32	HDFI1.9N	HDFI1.9C	1.92	2.43	250	1000	8.5	8.5
-48	HDFI2.9N	HDFI2.9C	2.91	3.80	100	400	12.0	12.0
-48Z	HDFI2.9ND	HDFI2.9CD	2.91	4.00	250	1000	16.0	16.0
-64	HDFI3.9N	HDFI3.9C	3.92	4.95	100	400	18.0	18.0
				METRIC				
Metric	Metr	ic .						

Metric Reference # Natural	Metric Reference # Conductive	Actual ID (mm)	Actual OD (mm)	Max Working Pressure Bar		Min Bend Radius (mm)	Weight (kg/m)
HDFI20N	HDFI20C	20	27	29	117	76	0.90
HDFI25N	HDFI25C	25	35	24	97	102	1.00
HDFI34N	HDFI34C	34	43	23	93	140	1.80
HDFI38N	HDFI38C	38	47	19	76	178	2.00
HDFI49N	HDFI49C	49	62	17	69	216	2.10
HDFI74N	HDFI74C	74	97	7	28	305	3.70
HDFI74ND	HDFI74CD	74	102	17	69	406	4.30
HDFI100N	HDFI100C	100	126	7	28	457	4.60

All pressure are calculated at 70°F (21°C). For applications involving higher temperatures, please consult the factory.

Rubber Covered FEP Hose • Jack-Chem

Our rubber covered hose has been custom engineered for lasting service in critical transfer applications. We can produce assemblies to your specific length and diameter needs to connect to your system. If you do not find the exact hose and fitting combination required for your service please contact our Customer Service. You can be assured our Engineering experts will be easy to talk to and focused on solving your problem.

Applications:	Chemical, Pharmaceutical and Food Processing
Innercore:	Starts with a chemically inert smooth FEP liner that is FDA compliant. The FEP liner is made to last with a heavy wall construction that provides more hoop strength and resistance to kinking during flexing.
Reinforcement:	Multiple plies of synthetic EPDM rubber are reinforced with a horizontal fabric braid, the inner layer of synthetic rubber is permanently bonded to the exterior of the FEP innercore. A wire helix is included to support the shape in full vacuum service and to further prevent kinking.
Temperature Range:	-65°F (-54°C) to +300°F (148°C) For temperatures over +300°F (148°C) contact the factory.
Chemical Resistance:	Refer to page 30.
Fittings:	Complete range stainless steel couplings in type 316SS also PFA encapsulated fittings for extreme corrosion resistance throughout entire wetted flow path.

	IMPERIAL														
Dash Size	Inch Reference #	Actual ID (in)	Tol (+/-) ID (in)	Actual OD (in)	Tol (+/-) OD (in)	Innercore Wall Thickness (in)	Max Working Pressure PSI	Min Burst Pressure PSI	Vacuum Rating*	Min Bend Radius (in)	Weight (lb/ft)				
-8	RRIO.5N	0.500	0.005	0.870	0.010	0.030	500	2000	Full	3.0	0.33				
-12	RRIO.7N	0.750	0.008	1.250	0.012	0.035	500	2000	Full	4.0	0.60				
-16	RRI1N	1.000	0.010	1.500	0.013	0.035	450	1800	Full	7.0	0.73				
-24	RRI1.5N	1.500	0.005	2.000	0.010	0.040	350	1400	Full	10.0	1.20				
-32	RRI2N	2.000	0.008	2.500	0.012	0.045	300	1200	Full	14.0	1.45				
-48	RRI3N	3.000	0.010	3.500	0.013	0.050	200	800	Full	30.0	2.40				

					METRIC					
Metric Reference #	Actual ID (mm)	Tol (+/-) ID (mm)	Actual OD (mm)	Tol (+/-) OD (mm)	Innercore Wall Thickness (mm)	Max Working Pressure Bar	Min Burst Pressure Bar	Vacuum Rating*	Min Bend Radius (mm)	Weight (kg/m)
RRM12.N	12.7	0.13	22.0	0.25	0.760	35	140	Full	76	0.49
RRM19N	19.1	0.19	31.8	0.29	0.900	35	140	Full	102	0.89
RRM25.N	25.4	0.25	38.1	0.32	0.900	31	124	Full	178	1.08
RRM38.N	38.1	0.13	50.8	0.25	1.000	24	96	Full	254	1.78
RRM50.N	50.8	0.19	63.5	0.29	1.140	20	80	Full	355	2.15
RRM76N	76.2	0.25	89.0	0.32	1.270	14	56	Full	762	3.56

All pressure and vacuum ranges are calculated at 70°F (21°C).

Silicone Covered Smooth Bore Hose

Constructed for Protection: Silicone covered smooth bore hose starts with smooth-bore high-performance PTFE core which permits higher flow rates and ease in cleaning of the nonstick PTFE innercore. We can produce assemblies to your specific length a to securely connect to your system. You can be assured our Engineering experts will be easy to talk to and focused on solving your problem.

In addition to the PTFE innercore two layers of protection are provided consisting of :

- Stainless Steel type 304 Braid for pressure resistance and tube support
- Extruded White Silicone Outer Cover is smooth for easy cleaning; kink, abrasion and tear resistance. Insulates and protects operators from elevated temperature conditions.

Applications: Approvals: Available Fittings & Accessories:

- Hot oils, food slurries, liquids, solvents, light sensitive chemicals, steam and adhesives. Underwriters Laboratories— National Sanitary Foundation — FDA Compliant 21 CFR 177.1550
 - Live Male Swivel Pipe Threads & Male Swivel Elbow Pipe Threads (90°)
 - Optional-Internal Support Spring for high temperature vacuum service

Silicone Covered Smooth Bore Hose-The Right Choice...

- Superior construction properties for long life, flexibility and durability
- Silicone smooth bore hose has passed the UL 60-day hot oil immersion testing
- Highly flexible hose which lends itself to easy and quick installation
- Smooth exterior silicone cover can be wiped down for cleaning convenience
- PTFE core with smooth exterior silicone suitable for temperatures to 400°F

Chemical Resistance: Refer to page 30.

IMPERIAL												
Dash Size	Inch Reference # Natural	Actual ID (in)	Actu OD (ual Wor in) Pres	ax king sure SI	Min Burst Pressure PSI	Min Bend Radius (in)	Weight (lb/ft)				
-10	SSI0.5N	0.50	0.7	7 17	50	7000	5.3	0.19				
-12	SSI0.6N	0.62	0.62 0.98		500 6000		6.5	0.28				
				METRIC								
Metric Reference Natural	e # Actua			Max Working Pressure Bar	B Pre	Min Burst essure PSI	Min Bend Radius (mm)	Weight (kg/m)				
SSM10.5	5N 12.7	19.	5	120	4	480	135	0.28				
SSN10.6	6N 15.7	24.	9	103	4	412	165	0.41				

The optional addition of inner spring support provides full vacuum support and resistance to overbending. Stated MBR values above are without internal support spring.

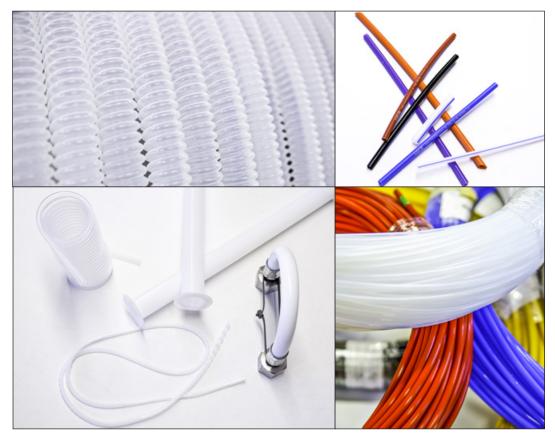
Burst pressures are based on 70°F (21°C), for higher temperatures please refer charts on page 29.

MTLC Hose

MTLC hose is engineered with a smooth PTFE innercore which is inserted and locked in place in reinforced corrugated metal hose that is also manufactured by United Flexible. The PTFE liner is flared over each end so that the entire wetted flow path is in contact with PTFE Fluoropolymer. This is a heavy duty containment hose. Vent holes in the metal assembly prevents gas build up between the PTFE liner and metal hose. We can produce assemblies to your specific length and diameter needs to connect to your system. You can be assured our Engineering experts will be easy to talk to and focused on solving your problem.

Applications:	Chemical processing industry to aid the state of the stat
Innercore:	MTLC starts with a chemically inert smooth PTFE liner that is FDA compliant. The PTFE liner is made to last with a heavy wall construction.
Reinforcement:	Heavy wall 321 stainless steel corrugated metal hose outer assembly with one layer of 300 series stainless steel braid reinforcement.
Temperature Range:	-65°F (-54°C) to +500°F (+260°C)
Chemical Resistance:	Refer to page 30.
Fittings:	PTFE flare over stainless steel flange retainer with your choice of backing flange. Backing flanges can be provided to meet various standards. Typical flange alloys are carbon steel, 304 and 316 stainless steel.

				IMPERI/	۸L			
Dash Size	Inch Reference # Natural	Inch Reference # Conductive	Actual ID (in)	Actual OD (in)	Max Working Pressure PSI	Min Burst Pressure PSI	Vacuum Rating (Hg)	Weight (lb/ft)
-16	MTI1N	MTI1C	1.00	1.6	500	2000	26	2.0
-24	MTI1.5N	MTI1.5C	1.50	2.3	400	1600	26	3.9
-32	MTI2N	MTI2C	2.00	2.9	300	1200	24	5.0
-48	MTI3N	MTI3C	3.00	3.9	200	800	24	5.3
-64	MTI4N	MTI4C	4.00	5.0	150	600	20	5.6
-96	MTI6N	MTI6C	6.00	7.0	150	600	20	13.0
-128	MTI8N	MTI8C	8.00	9.1	125	500	20	20.0
-160	MTI10N	MTI10C	10.00	11.2	100	400	20	26.0
-192	MTI12N	MTI12C	12.00	13.2	90	360	20	34.5


	METRIC											
Metric Reference # Natural	Metric Reference # Conductive	Actual ID (mm)	Actual OD (mm)	Max Working Pressure Bar	Min Burst Pressure Bar	Vacuum Rating (Hg)	Weight (kg/m)					
MTM25N	MTM25C	25	42	34	138	26	3.0					
MTM38N	MTM38C	38	59	28	110	26	5.7					
MTM51N	MTM51C	51	73	21	83	24	7.4					
MTM76N	MTM76C	76	100	14	55	24	7.8					
MTM102N	MTM102C	102	126	10	41	20	8.3					
MTM152N	MTM152C	152	178	10	41	20	19.3					
MTM203N	MTM203C	203	231	9	34	20	29.8					
MTM254N	MTM254C	254	284	7	28	20	38.7					
MTM305N	MTM305C	305	336	6	25	20	51.3					

All pressure and vacuum ratings are calculated at 70°F (21°C). Note MTLC assemblies have limited flexibility and are not intended to be used in dynamic constant flexing service.

Fluoropolymer Smooth Bore Tubing Capabilities

United Flexible's tube production comprises many fluoropolymers. The following technical data shows specifications for our standard dimensions. In addition to our standard range, we also produce according to customer demands.

PTFE tubing has in natural stage a milky white to transparent apperance. PTFE is the fluoropolymer with the highest temperature range and best chemical resistance. We can as well produce it in different colors, with fillers to enhance properties and customized to your application demands. Antistatic PTFE is available even with FDA compliant filler. PTFE tubing can be laser marked for tracability and is even available as convoluted tubing. See some examples below.

Sizes Available:	ID 0,20 mm (.0078 in) to ID 40,00 mm (1.5748 in) Wall 0,15 mm (.0059 in) to 5,00 mm (.1968 in)
Applications:	Food processing, chemical processing, water handling, ink and painting systems, delivery of natural gas and mineral oils, adhesive delivery lines and cryogenic applications. PTFE tubing is used in a variety of applications in the automotive, aviation, electrical and appliance markets.
Pressure Range:	Low to mid pressure applications
Temperature Range:	-60°C to +260°C (-76°F to +500°F)
Chemical Resistance:	Refer to page 30
Compliance:	PTFE Grades in use are compliant to FDA 21 CFR 177.1550, REACH and RoHS, Some grades are compliant to EU 10/2011, USP class VI and WRAS.

	PTFE TUBING TOLERANCES (ID & OD)														
ID (mm)	ID (in)	Tol. (mm)	Tol. (in)	OD (mm)	OD (in)	Tol. (mm)	Tol. (in)								
0,20-1,00	.008039	±0,05	± .002	0,30-1,00	.008039	±0,05	± .002								
1,01-4,00	.039157	±0,10	± .004	1,01-4,00	.039157	±0,10	± .004								
4,01-8,00	.158315	±0,15	± .006	4,01-8,00	.158315	±0,15	± .006								
8,01-12,50	.315492	±0,20	± .008	8,01-12,50	.315492	±0,20	± .008								
12,51-20,00	.492787	±0,25	± .010	12,51-20,00	.492787	±0,25	± .010								
20,01-30,00	.788 - 1.181	±0,30	± .012	20,01-30,00	.788 - 1.181	±0,30	± .012								
30,01-40,00	1.181 - 1.575	±0,35	± .014	30,01-40,00	1.181 - 1.575	±0,35	± .014								

Fluoropolymer Smooth Bore Tubing Capabilities

FEP tubing has in natural stage a totally transparent apperance. In some applications even colored FEP tubing is desired. Here we can help with different colorings. FEP tubing is favoured in food and beaverage application due to the excellent clarity. FEP is virtually uneffected by UV light and ozone

Applications:	Food processing, chemical processing, water handling, insulation,
Pressure Range:	Low to mid pressure applications
Temperature Range:	-60°C to +205°C (-76°F to +401°F)
Chemical Resistance:	Refer to page 30
Compliance:	FEP grades in use are compliant to FDA 21 CFR 177.1550, REACH and RoHS. Some grades are compliant to EU 10/2011, USP Class VI, WRAS.
	FEP as material is classified UL $94 = VO$.

PFA tubing has in natural stage a totally transparent apperance. In some applications even colored PFA tubing is desired. Here we can help with different colorings. PFA tubing is favoured in application were purity is an issue.

Applications:	Semi conductive Industry, food and pharma processing, analytics, heat exchangers, gas distribution,
Pressure Range:	Low to mid pressure applications
Temperature Range:	-60°C to +260°C (-76°F to +500°F)
Chemical Resistance:	Refer to page 30
Compliance:	PFA Grades in use are compliant to FDA 21 CFR 177.1550, REACH and RoHS. Some grades are compliant to EU 10/2011, USP Class VI, WRAS.

PFA is classifies UL94 = VO.

FEP & PFA Sizes available:

ID 0,50 mm (.0197 in) to 25,00 mm (.9842 in) Wall 0.50 mm (.197 in) to 4,00 mm (.1574 in)

	FEP & PFA (ID&OD)													
ID (mm)	ID (in)	Tol. (mm)	Tol. (in)	OD (mm)	OD (in)	Tol. (mm)	Tol. (in)							
0,50-1,00	.020039	±0,05	± .002	0,50-1,00	.020039	±0,05	± .002							
1,01-2,00	.039 - 079	±0,07	± .003	1,01-2,00	.039 - 079	±0,07	± .003							
2,01-4,00	.079157	±0,10	± .004	2,01-4,00	.079157	±0,10	± .004							
4,01-8,00	.158315	±0,15	± .006	4,01-8,00	.158315	±0,15	± .006							
8,01-12,50	.315492	±0,20	± .008	8,01-12,50	.315492	±0,20	± .008							
12,51-20,00	.492787	±0,30	± .012	12,51-20,00	.492787	±0,30	± .012							
20,01-30,00	.788 - 1.181	±0,35	± .014	20,01-30,00	.787 - 1.181	±0,35	± .014							

Machined PTFE Parts

Our production range contains everything from standard guide rings and sealings to customer specific products. Many of the products which we manufacture today are very advanced. In this production, we benefit our long experience in materials and know how which we have gained during the years. Our solid experience of different techniques, especially isostatic molding gives us the ability to produce material samples for testing matching the properties which our customers are requiring.

Machined PTFE Parts can be produced in pure PTFE or in PTFE combined with fillers. Fillers used are glass, carbon, bronze, steel and MoS2. We produce among others nozzles, sleeves, bushings, flexible PTFE membranes, bellows, lab equipment in PTFE, filled and natural rollers, encapsulation of other objects in PTFE.

United Flexible Fluoropolymer Gas Hoses

We manufacture assembled fluoropolymer hoses for the gas industry and for other companies which provide gas equipment world wide. Hoses and fittings are optimized to fulfill the various quality standards which are necessary to meet the security levels within the gas industry. We have a long history and experience of manufacturing fluoropolymer gas filling hoses since we invented the fluoropolymer gas filling hose back in the late 1950's. We serve all the gas filling companies globally.

Advantages with Fluoropolymer gas hoses

- Extremely chemical resistant can withstand close to all known gases
- Superior flex life compared to metallic gas hoses, gives longer service life
- Excellent temperature range 60°C to +260°C(-76°F to +500°F)
- Minimal diffusion compared to other polymeric materials
- Light construction
- Cost effective assembly no welding required

We design and produce from inner tubing to assembled hose in-house which means that we have full control of the entire process. We use PTFE, PFA and ETFE (Tefzel) to meet application requirements and customer demands. We have a wide fitting program both in design and material in order to meet different market demands and standards.

We have many different accessories for our gas filling hoses. See next side for further examples.

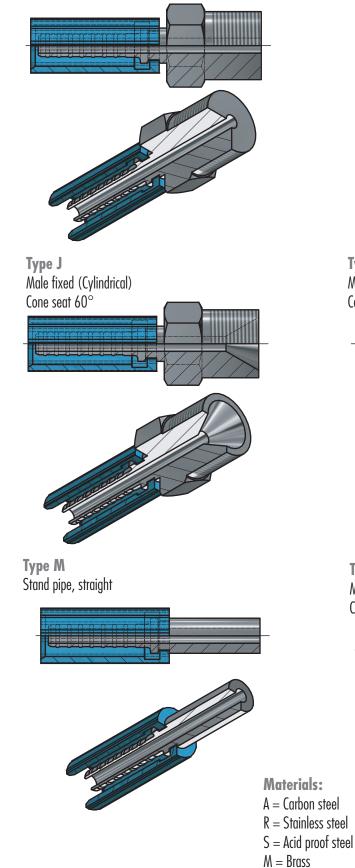
Temperature Range: -60°C to +260°C (-76°F to +500°F)

Chemical Resistance: Refer to seperate data pages or website (URL)

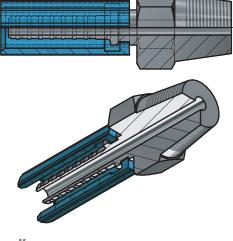
Compliance:

We have many designs approved according to ISO 14113 for Oxygen, acetylene and many other gases. The raw material grades used for the inner tubing are compliant to FDA 21 CFR 177.1550 and/or USP Class VI, EU 10/2011 or WRAS. Contact the factory for more information.

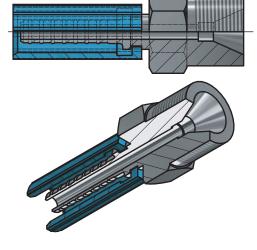
	COMPRESSED GAS CYLINDER FILL HOSE GUIDE													
Working Press	ig Pressure PSI 3000 400		4000	6000	3000	4350	6000	6000	4000	5300	3000			
Working Pressu	Working Pressure BAR 207 2		276	414	207	300	414	414	276	366	207			
Innercore T	уре	PTFE	PTFE	PTFE	ETFE	PFA	ETFE	PFA	316SS	316SS	Monel			
Hose Part #	Imperial	HDSI0.2N	DPSI.22C	ULPIM0.2C	HDSTFI0.24N	HDDPFI0.25N	ULEIO.2N	ULPIDO.2N	402H	402X	A400-2			
Hose Part #	Metric	HDSM6.2N	DPSM5.6C	ULPIMM5.8C	HDSTFM6.2N	HDDPFM0.25N	ULEMD6.5N	ULPMD6.5N	402H	402X	A400-2			
Gas	CGA #													
Acetylene**	510	1	1	1	3	2	3	2	3	3	3			
Air	346	1	1	3	3	2	3	2	3	3	3			
Argon	580	1	1	3	3	2	3	2	3	3	3			
Arsine**	510	5	5	5	5	5	5	5	5	5	3			
Carbon Dioxide	320	1	1	3	5	5	5	5	3	3	3			
Carbon Monox-	350	2	2	2	2	2	2	2	1	1	3			
Chlorine**	660	5	5	5	5	5	5	5	5	5	2			
Fluorine**	679	5	5	5	5	5	5	5	5	5	2			
Helium	580	5	5	5	1	5	CF	5	1	1	2			
Hydrogen	350	5	5	5	2	5	CF	5	2	2	3			
Natural Gas**	350	2	2	3	3	1	3	1	1	1	3			
Nitrogen	580	1	1	2	3	1	3	1	3	3	3			
Nitrous Oxide	326	2	2	3	3	1	3	1	3	3	3			
Oxygen	540]*]*	3*	5*	1*	5]*	3	3	2			
Silane**	350 OR 510	5	5	5	5	5	5	5	5	5	2			

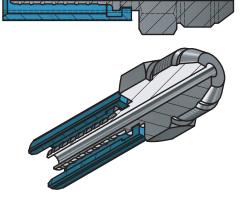

Compatability Rating: Excellent = 1: Very Good = 2: Good = 3: Acceptable = 4: Not Recommended = 5: CF = Consult Factory

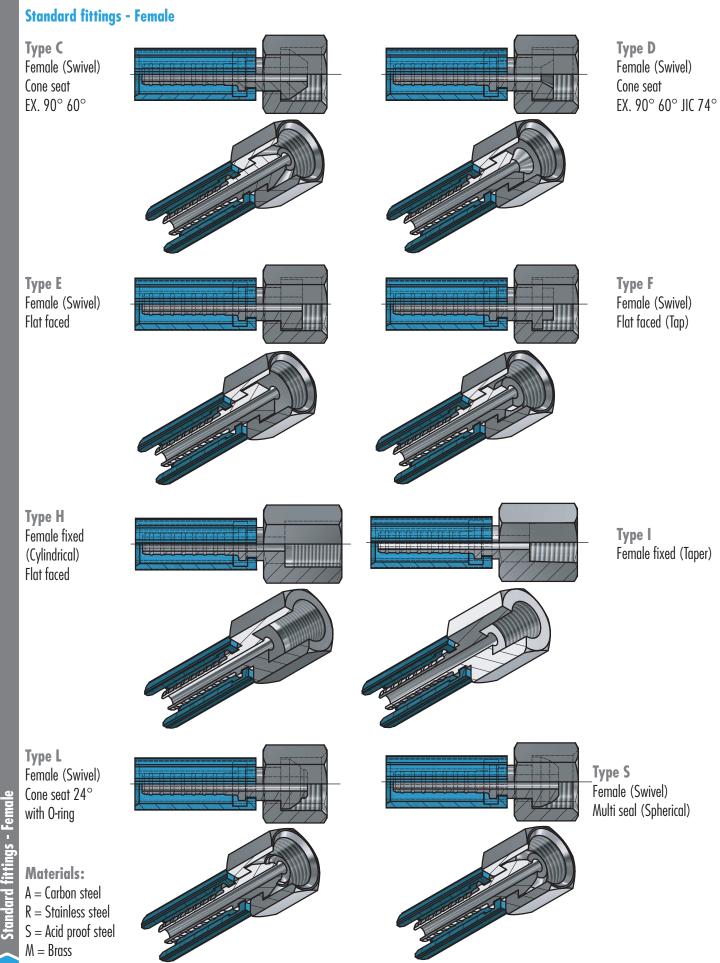
* Distance piece/flash arrestor should be used with Fluoropolymer assemblies in case of adiabatic compression.


** Combustible and toxic gasses should be transferred in a well ventilated environment.

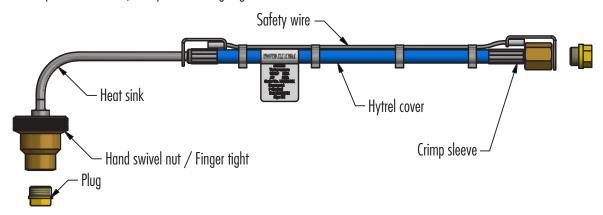
Standard fittings - Male


Type A Male fixed (Cylindrical) Flat faced (Thread type BSP, UNF, ISO 228/1 or Metric)

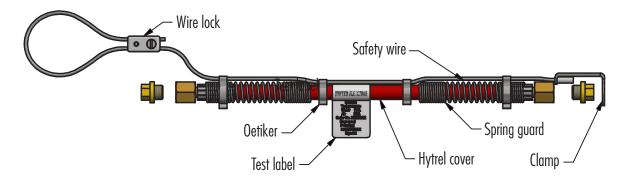

Type B Male fixed (Taper) Flat faced (Thread type NPT, BSTP, ISO 7/1)


Type K Male fixed (Cylindrical) Cone seat 24°

Type N Male fixed (UNF) Cone seat 74° JIC

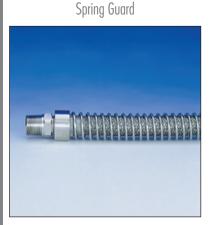


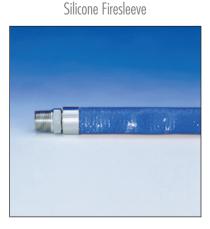
UNITED FLEXIBLE



Compressed Gas Hose Assemblies & Accessories

O2 Hose: Gas hose assembly for Oxygen filling (Example with heat sink, safety wire and fingertight hand swivel nut)


C2H2 Hose: Gas hose assembly for Acetylene filling (Example with safety wire, spring guard and loop with wire lock)


Besides these examples, we manifacture many different configurations. Hoses for O2 and C2H2 can be designed to pass the decomposition (O2) or ignition (C2H2) tests acc. to. ISO 14113 Please ask the factory for details.

Protective Hose Coverings

United Flexible offers several types of protective hose coverings to help extend the service life of our Fluoropolymer hoses.

To prolong the life of hose lines that are exposed to rugged operating conditions, such as severe flexing, Spring Guard reduces kinking and protects the hose from abrasion and rough handling.

This fiberglass sleeving has a coating of silicone rubber bonded to it which offers flame resistance that will protect the hose from extreme temperature conditions.

Nylon

Heat Shrink Tubing

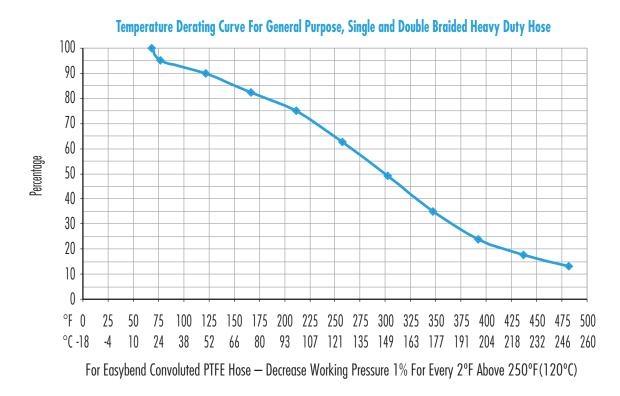
To minimize hose O.D., heat shrinkable tubing is used in applications where cleanliness is essential, such as food and pharmaceutical processing. This provides easy cleaning of the outer hose surface.

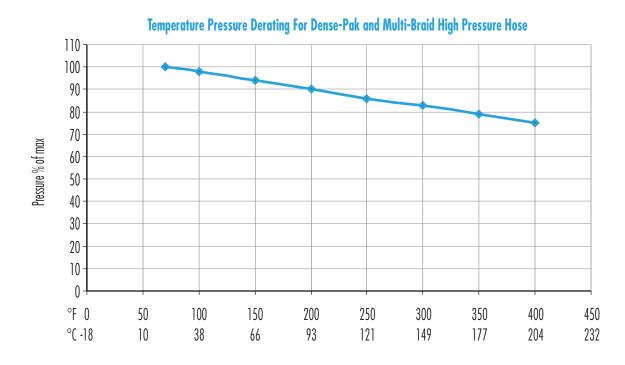
Hytrel™

The Hytrel hose cover is available for covering smooth bore and high pressure hoses. United Flexible uses Hytrel grade 4056 which is ideal for flex fatigue resistance. Hytrel is extruded in custom colors to suit a particular service or media transfer condition. Consult customer service on how we can customize your hose with with our Hytrel extrusion capability.

™Hytrel is a registered trademark of E.I. du Pont de Nemours and Company

Armor




A highly flexible heavy duty metal casing to protect the hose against severe handling abuse and overbending. This can be applied over the entire length or in short sections at the end connection.

Woven from thousands of nylon filaments into an abrasion-resistant sleeve, the nylon cover extends individual hose life in severe abrasive environments. As it is scuffed and worn, its filaments frizz, forming an even thicker, more protective shield.

Contact Customer Service for more information about protective hose coverings.

Temperature Derating

Material Compatibility Key: 1. Excellent 2. Acceptable 3. Not Recommended O. No Information, Test Before Using Effusion Chart Key:

A. Effusion will occur with potential to displace breathable air in an enclosed environment. For further information contact factory.

- B. These compounds have the capability to effuse and with certain atmospheric conditions can corrode metallic components such as braid and fittings. Applications with these compounds require using hose assemblies only in well ventilated spaces, please consult factory with questions.
- C. Chemicals in this catagory are in a gas phase at atmospheric pressures and at tempratures of 56°F (12°C) or less. For further information on compatibility please consult factory.

	se	Fitting Material						Se	Fitting Material			rial	_
Chemical	PTFE Hose					Effusion	Chemical	PTFE Hose					Effusion
Chemical	H	S	304SS	31655	Brass	ffu	Chemical	E.	S	304SS	31655	Brass	ffu
	E		30		ā			E E					-
Acetaldehyde	1	1	1	1	1	В	Benzaldehyde	1	1	0	0	0	
Acetic Acid Glacial	1	0	2	2	0		Benzine	1	1	1	1	1	В
Acetic Acid 30%	1	3	2	2	3		Benzyl Alcohol	1	1	1	1	0	
Acetic Anhydride	1	3	2	2	3		Benzyl Benzoate	1	1	1	1	0	
Acetone	1	1	1	1	1		Benzyl Chloride	1	1	0	0	0	
Acetylene	1	0	1	1	2	C	Bismuth Carbonate	1	1	1	1	0	
Acrylonitrile	1	1	1	1	0		Black Sulphate Liquor	1	1	1	1	0	
Alum Ammonium or Potassium	1	3	2	2	3		Blast Furnace Gas	1	1	1	1	1	С
Aluminum Acetate	1	0	1	1	3		Borax	1	2	1	1	2	
Aluminum Bromide	1	3	2	2	3		Bordeaux Mixture	1	0	1	1	0	
Aluminum Chloride	1	3	2	2	3		Boric Acid	1	3	2	1	3	
Aluminum Fluoride	1	3	2	2	3		Bunker Oil	1	1	1	1	1	
Aluminum Hydroxide	1	0	1	1	1		Butadiene	1	0	1	1	1	
Aluminum Nitrate	1	3	1	1	0		Butane	1	1	1	1	1	С
Aluminum Salts	1	0	2	2	0		Butter Oil	1	1	1	1	1	
Aluminum Sulfate	1	3	3	2	3		Butyric Acid	1	3	1	1	2	
Ammonia, Anhydrous	1	1	1	1	0		Butyl Acetate	1	2	1	1	1	
Ammonia, Aqueous	1	0	1	1	3		Butyl Alcohol	1	1	1	1	1	
Ammonium Carbonate	0	1	1	1	0		Butyl Amine	0	1	1	1	1	
Ammonium Chloride	1	0	2	2	3		Butyl Carbitol	1	1	1	1	1	
Ammonium Hydroxide	1	2	1	1	3		Butyl Stearate	1	1	1	1	1	
Ammonium Metaphosphate	1	1	1	1	0		Butyl Mercapatan	1	0	1	1	0	
Ammonium Nitrate	1	1	1	1	3		Butyraldehyde	1	0	0	0	1	
Ammonium Nitrite	0	0	1	1	0		Calcium Acetate	1	1	1	1	1	
Ammonium Persulfate	0	0	1	1	0		Calcium Bisulfate	1	0	2	1	3	
Ammonium Phosphate	1	3	2	1	0		Calcium Bisulfite	1	0	1	1	0	
Ammonium Sulphate	1	1	1	1	3		Calcium Carbonate	1	1	1	1	1	
Ammonium Thiocyanate	1	1	1	1	0		Calcium Chlorate	1	0	2	1	0	
Amyl Acetate	1	3	1	1	1		Calcium Chloride	1	3	2	1	2	
Amyl Alcohol	1	1	1	1	1		Calcium Hydroixe	1	3	2	1	2	
Amyl Chloride	1	0	1	1	0		Calcium Hypochlorite	1	0	3	2	2	
Amyl Chloronaphthalene	1	0	1	1	0		Calcium Nitrate	1	1	3 1	2 1	ა 1	
Amyl Naphthalene	1	0	1	1	0		Calcium Silicate	1	1	1	1	1	В
Aniline	1		1	1	3		Calcium Sulfate	1	1	-	1	1	D
-	1	2	1		3 0			1	1	1	1	1	
Aniline Dyes	1	3 0	3	1	3		Calcium Sulfide	1	1	1	1	0	
Aniline Hydrochloride	1	-	-	-			Cane Sugar Liquors	1	1	1	1		
Animal Fats		1	1	1	0		Carbolic Acid		3			3	
Aqua Regia		0	3	3	0		Carbon Dioxide	1	1	1			A
Arsenic Acid	1	2	0	1	0		Carbon Disulfide	0	2	1	1	2	
Askarel	0	1	1	1	1		Carbonic Acid	1	3	1		3	6
Asphalt		1			2		Carbon Monxide			1		1	C
Barium Carbonate		2		1	1		Carbon Tetrachloride		3	2	2	2	
Barium Chloride		3	1	1	2		Castor Oil	1	1	1	1	1	
Barium Hydroxide	1	2	1	1	0		Caustic Soda	1	2	1	1	3	
Barium Sulfate	1	1	1	1	2		Cellosolve, Acetate	1	1	1	1	0	
Barium Sulfide	1	3	1	1	3		Cellosolve, Butyl	1	1	1	1	0	
Beer	1	2	1	1	1		Cellulube	1	1	1	1	1	
Beet Sugar Liquors	1	1	1	1	0		Chlorine, Gaseous, Dry*	*	2	3	3	2	С
Benzene	1	1	1	1	1		Chlorine, Gaseous, Wet*	*	3	3	3	3	В
Benzenesulfonic Acid	0	3	0	2	0		Chlorine Trifluoride	0	3	0	0	0	C
*DO NOT LICE stainlass staal buridad	DTEE												

*DO NOT USE stainless steel braided PTFE hose.

Material Compatibility Key: 1. Excellent 2. Acceptable 3. Not Recommended O. No Information, Test Before Using Effusion Chart Key:

- A. Effusion will occur with potential to displace breathable air in an enclosed environment. For further information contact factory.
- B. These compounds have the capability to effuse and with certain atmospheric conditions can corrode metallic components such as braid and fittings. Applications with these compounds require using hose assemblies only in well ventilated spaces, please consult factory with questions.
- C. Chemicals in this catagory are in a gas phase at atmospheric pressures and at tempratures of 56°F (12°C) or less. For further information on compatibility please consult factory.

	ose	Fit	Fitting Materi			u		ose	Fit		Material		ы
Chemical	PTFE Hose	ខ	304SS	31655	Brass	Effusion	Chemical	PTFE Hose	ខ	304SS	31655	Brass	Effusion
Chloroacetic	1	3	3	3	2		Ethyl Benzene	1	1	<u>ຕ</u>	1	1	
Chlorobenzene	1	1	1	1	1		Ethyl Cellulose	1	1	1	1	1	
Chlorobromomethane	1	1	1	1	1		Ethyl Chloride	1	2	1	1	2	
Chloroform	1	1	1	1	1		Ethyl Ether	1	2	1	1	1	$\left - \right $
0-Chloronaphthalene	1	1	1	1	1		Ethyl Mertaptan	1	2	0	0	2	В
Chlorotoluene	1	1	1	1	1		Ethyl Pentochlorobenzene	1	2	1	1	1	
Chromic Acid	1	3	3	2	3		Ethylene Chloride	1	2	1	1	2	
Citric Acid	1	3	3	1	3		Ethylene Chlorohydrin	1	0	0	0	0	
Cod Liver Oil	1	3	1	1	3		Ethylene Diamine	1	0	0	0	1	
Coke Over Gas	1	1	1	1	0		Ethylene Glycol	1	2	1	1	i	
Copper Chloride	1	3	3	1	3		Fatty Acids	1	0	1	1	0	
Copper Chanide	1	0	1	1	3		Ferric Chloride	1	3	3	3	3	$\left - \right $
Copper Sulfate	1	3	1	1	3		Ferric Nitrate	1	3	1	1	0	
Corn Oil	1	3	1	1	3		Ferric Sulfate	1	3	1	1	3	
Corn Syrup	1	1	1	1	0		Ferrous Chloride	1	3	1	2	2	$\left - \right $
Cottonseed Oil	1	2	1	1	3		Ferrous Nitrate	1	0	1	1	0	
Creosote	1	2	1	1	3		Ferrous Sulfate	1	3	1	1	2	$\left \right $
Cresol	1	2	1	1	0		Fluoroboric Acid	1	0	1	1	0	
Crude Wax	1	1	1	1	1		Flormaldehyde	1	0	1	1	1	$\left \right $
Cutting Oil	1	1	1	1	1		Formic Acid	1	3	1	2	1	
Cyclohexane	1	1	1	1	1		Freon 12	2	3	1	1	0	Δ
Cyclohexanone	1		1	1	0		Freon 114	2	3	1	1	0	A
	1	0	0		1		Freeh 114 Fuel Oil		2	2	2	1	A
Cymene Decalin	1	0	-	0	1		Fuer on Fumaric Acid	1					
Denatured Alcohol	1	0	0	0	1			0	0	1	1	0	$\left - \right $
	1	1	1	1			Furon Furfuran	1	2			1	
Diacetone	1	1	1	1	1		Fufural Gallic Acid	1	2 3	1	1		
Diacetone Alcohol	1	1	1	1	1		Gasoline	1			1	0	
Dibenzyl Ether	1	1	1	1	-				2	1	1		<u> </u>
Dibutyl Ether	1	1	1	1	1		Glauber's Salt	0	1	1	1	0	
Dibutyl Phthalate	1	1	1	1	1		Glucose Glue	1	•	1	1	3	
Dibutyl Sebacate Dichlorobenzene	1	1	1	1	1			1	2	1	1	3 1	
	<u> </u>	-	•	-	-		Glycerin	· ·		-			
Diesel Oil	1	1	1	1	1		Glycols	1	1	1	1	1	
Diethylamine	1	3	0	2	3	D	Green Sulfate Liquor	1	1	1	1	0	<u> </u>
Diethyl Ether	1	1	1	1	1	В	n-Hexaldehyde Hexane	1	1	1	1	1	
Diethylene Glycol Diethyl Phthalate	1	1	1	1	•			1	1	1	1	1	
	1	0	1	1	1		Hexene	1	1	1	1 2	1	<u> </u>
Diethyl Sebacate Di-Isobutylene	0	0	1	1	1		Hexyl Alcohol Hydraulic Oil, Petroleum	1	1	1	2 1	0	<u> </u>
	0	0	1	-				1	3	3	3	3	D
Di-Isopropyl Keytone	1		1	1	1		Hydrochloric Acid, 15%	1					B
Dimethyl Aniline	1	0	0	0	1		Hydrochloric Acid, 37%	1	3	3	3	3	В
Dimethyl Formamide	0	1		1	0		Hydrocarbon Acid	1	3	1	1	3	\mid
Dimethyl Phthalate	1	0	0	0	1		Hydrofluoric Acid Concentrated	1	3	3	3	3	\mid
Dioctyl Phthlatate		1		1	1		Hydrofluosilicic Acid	 *	0	3	3	3	
Dioxane		1		1	1		Hydrogen, Gaseous	^ 		1		1	C
Dipentene	1	1		1	1		Hydrogen Peroxide, 70%		3	2		3	
Ethanolamine	1	1		1	1		Hydrogen Sulfide, Gaseous		3	2		3	
Ethyl Acetate		1		1	1		Hydroquinone	0	1	0		0	
Ethyl Atrylate	0	1	1	1	0		Isobutyl Alcohol	1	1	1	1	2	
Ethyl Alcohol	1	1	1	1	2		Iso Octane	1	1	1	1	1	

*DO NOT USE stainless steel braided PTFE hose.

Material Compatibility Key: 1. Excellent 2. Acceptable 3. Not Recommended O. No Information, Test Before Using Effusion Chart Key:

A. Effusion will occur with potential to displace breathable air in an enclosed environment. For further information contact factory.

- B. These compounds have the capability to effuse and with certain atmospheric conditions can corrode metallic components such as braid and fittings. Applications with these compounds require using hose assemblies only in well ventilated spaces, please consult factory with questions.
- C. Chemicals in this catagory are in a gas phase at atmospheric pressures and at tempratures of 56°F (12°C) or less. For further information on compatibility please consult factory.

	ose	Fit	ting I	Nate	rial	n		ose	Fitt	ting I	Material		E
Chemical	PTFE Hose		SS	SS	S	Effusion	Chemical	PTFE Hose		SS	SS	S	Effusion
	PTF	S	304SS	31655	Brass	E		PFF	S	304SS	31655	Brass	E.
Isopropyl Acetate	1	1	1	1	1		Nitrogen Tetroxide	0	0	0	2	0	
Isopropyl Alcohol	1	1	1	1	2		n-Octane	0	1	1	1	1	
Isopropyl Ether	1	1	1	1	1		Octyl Alcohol	1	1	1	1	2	
Kerosene	1	1	1	1	1		Oil, SAE	1	1	1	1	1	1
Lacquers	1	3	3	1	1		Oleic Acid	1	2	2	1	2	
Lacquer Solvents	1	3	3	1	1	В	Olive Oil	1	2	2	1	2	
Lactic Acid	1	3	2	1	2		Oxalic Acid	1	3	2	1	3	
Lard	1	1	1	1	3		Oxygen, Gaseous	1	1	1	1	1	Α
Lead Acetate	1	2	1	1	1		Ozone	1	1	1	1	1	
Lead Nitrate	0	1	1	1	0		Paint	1	0	1	1	1	
Lime Bleath	0	3	2	1	0		Palmitic Acid	1	1	2	1	3	
Linoleic Acid	1	0	0	0	0		Peanut Oil	1	1	1	1	1	
Linseed Oil	1	2	1	1	2		Perchloric Acid	1	0	2	1	0	
Lubricating Oils, Petroleum	1	1	1	1	1		Perchlorethylene	1	1	1	1	1	
Magnesium Chloride	1	3	2	1	2		Petroleum	1	1	1	1	1	
Magnesium Hydroxide	1	1	1	1	0		Phenol	1	3	1	1	3	
Magnesium Sulfate	1	2	1	1	1		Phorone 1	1	1	1	1	1	
Molic Acisd	1	2	2	1	0		Piric Acid	1	3	1	1	3	
Mercuric Chloride	1	3	1	1	3	В	Pinene	1	1	1	1	1	
Mercury	1	1	1	1	3	_	Pine Oil	1	1	1	1	0	
Mesityl Oxide	1	1	1	1	1		Plating Solution, Chrome	1	0	3	3	0	
Methyl Acetate	1	1	1	1	1		Potassium Acetate	1	0	1	1	0	
Methyl Atrylote	0	1	1	1	1		Potassium Chloride	1	2	2	1	3	
Methyl Alcohol	1	1	1	1	2	С	Potassium Cyanide	1	2	1	1	3	
Methyl Bromide	1	1	1	1	1	-	Potassium Dichromate	1	0	1	1	0	
Methyl Butyl Ketone	0	1	1	1	1		Potassium Hydroxide, 30%	1	3	1	1	3	
Methyl Chloride	1	1	1	1	1		Potassium Nitrate	1	3	1	1	2	
Methylene Chloride	1	1	1	1	1		Potassium Sulfate	1	2	1	1	2	
Methyl Ethyl Ketone (MEK)	1	1	1	1	1		Propane	1	1	1	1	1	Α
Methyl Formate	1	1	1	1	1	В	Propyl Acetate	0	1	1	1	1	
Methyl Isobutyl Ketone	1	1	1	1	1		Propyl Alcohol	1	1	1	1	2	
Methyl Methacrylate	1	1	1	1	1		Pyricine, 50%	1	0	1	1	1	
Methyl Salicylate	1	1	1	1	1		Red Oil	1	2	2	1	2	
Milk	1	3	1	1	3		Salicylic Acid	0	0	1	1	0	
Mineral Oil	1	1	1	1	1		Salt Water	1	2	1	1	3	
Monochlorobenzene	1	1	1	1	1		Sewage	1	3	1	1	1	
Monoethanolamine	0	1	1	1	1		Silicone Greases	0	1	1	1	1	
Naphtha	1	2	1	1	1		Silcone Oils	0	1	1	1	1	
Naphthalene	1	0	1	1	0		Silver Nitrate	1	2	1	1	2	
Napthenic Acid	1	0	2	1	0		Skydrol 500 & 7000	1	1	1	1	0	
Natural Gas	1	1	1	1	2		Soap Solutions	1	1	1	1	1	
Nickel Acetate	1	1	1	1	1		Soda Ash	1	1	1	1	2	<u> </u>
Nickel Chloride	1	3	2	2	3		Sodium Acetate	1	1	1	1	1	
Nickel Sulfate	1	0	2	1	3		Sodium Ricarbonate	1	2	1	1	2	1
Niter Coke	0	3	2	1	0		Sodium Bisulfite	1	1	1	1	0	1
Nitric Acid, All Concentrations	1	3	2	2	3		Sodium Borate	1	1	1	1	0	
Nitric Acid, Red Fuming	1	3	2	2	3		Sodium Chloride	1	2	2	1	3	
Nitrobenzene	1	1	1	1	1		Sodium Cyanide	1	2	1	1	3	
Nitroethane	1	0	1	1	1		Sodium Hydroxide, 40%	1	2	1	1	3	
Nitrogen, Gaseous	1	1	1	1	1	Α	Sodium Hypochlorite	1	3	3	2	3	
						7			0	0	~	0	1

Chemical Resistance & Effusion Data for PTFE Hose

Material Compatibility Key: 1. Excellent 2. Acceptable 3. Not Recommended O. No Information, Test Before Using Effusion Chart Key:

- A. Effusion will occur with potential to displace breathable air in an enclosed environment. For further information contact factory.
- B. These compounds have the capability to effuse and with certain atmospheric conditions can corrode metallic components such as braid and fittings. Applications with these compounds require using hose assemblies only in well ventilated spaces, please consult factory with questions.
- C. Chemicals in this catagory are in a gas phase at atmospheric pressures and at tempratures of 56°F (12°C) or less. For further information on compatibility please consult factory.

		Fitt	ting l	Nate	rial	ы		ose	Fit	rial	ы Ы		
Chemical	PTFE Hose	S	30455	31655	Brass	Effusion	Chemical	PTFE Ho	S	30455	31655	Brass	Effusion
Sodium Metaphosphate	1	3	1	1	3		Transmission Fluid, Type A	1	1	1	1	1	
Sodium Nitrate	1	1	2	2	2		Tributoxyethyl Phosphate	1	1	0	0	0	
Sodium Perborate	1	3	1	1	3		Tributyl Phosphate	1	1	0	0	0	
Sodium Peroxide	1	3	1	1	3		Trichlorethylene	1	3	0	1	1	
Sodium Phosphate	1	0	1	1	3		Tricresyl Phospahte	1	1	0	2	0	
Sodium Thiosulfate	1	3	1	1	3		Tung Oil	1	1	1	1	1	
Soybean Oil	1	1	1	1	0		Turpentine	1	0	1	1	2	
Stannic Chloride	1	3	0	0	3		Urea Solution, 50%	1	1	1	1	0	
Steam	1	1	1	1	2	Α	Varnish	0	2	1	1	2	
Stearaic Acid	1	3	2	1	3		Vegetable Oils	1	1	1	1	0	
Stoddard Solvent	1	2	1	1	1		Versilube	1	1	1	1	1	
Styrene	1	2	0	2	2		Vinegar	1	3	2	1	3	
Sucrose Solution	1	1	1	1	0		Vinyl Chloride	1	2	1	1	3	C
Sulfur, 200degrees F	1	2	2	1	3		Water	1	2	1	1	1	
Sulfur Chloride	1	3	3	2	3		Whiskey, Wines	1	3	2	1	3	
Sulfur Dioxide	1	2	1	1	1	С	Xylene	1	2	2	2	0	
Sulfur Trioxide	1	2	2	2	0	В	Zinc Acetate	1	1	1	1	1	
Sulfuric Acid,10%	1	3	3	2	3		Zinc Chloride	1	3	2	1	3	
Sulfuric Acid, 98%	1	2	3	2	3		Zinc Sulfate	1	3	2	1	3	
Sulfuric Acid, Fuming	1	2	0	1	3								
Sulfurous Acid, 10%	1	3	2	1	3								
Sulfurous Acid, 75%1	1	3	3	2	3								
Tonnic Acid, 10%	1	2	1	1	3								
Tar, Bituminous	1	1	1	1	2								
Tartaric Acid	1	0	2	2	0								
Terpineol	1	0	0	0	0								
Titanium Tetrachloride	0	1	2	2	3								
Toluene	1	1	1	1	1								
Toluene Diisocyanote	0	0	0	0	0								
Transformer Oil	1	1	1	1	1								

*DO NOT USE stainless steel braided PTFE hose.

Technical Considerations

Unique service conditions can effect the selection and safe performance of Fluoropolymer hose in applications that involve conductivite media, permeating gasses and other technical considerations. The following Technical Bulletins are provided on our website as further resources to assist you in the proper selection of United Flexible products.

- Technical Bulletin Anti-Static
- Technical Bulletin Effusion
- Technical Bulletin Chemical Resistance
- Technical Bulletin Hytrel Hose Covering

= UNITED FLEXIBLE ____

NOTES

UNITED FLEXIBLE

NOTES

United Flexible, Inc. 815 Forestwood Drive Romeoville, IL 60446, USA T: +1 815-886-1140 F: +1 815-886-4550

Global Leader of Flexible Hose and Assemblies

Global Operations and Technical Support Centers

e-mail: info@unitedflexible.com

US Hose Corp. 815 Forestwood Drive Romeoville, IL 60446, USA T: +1 815-886-1140 F: +1 815-886-4550

US Hose Corp. 2020 Greens Road, Suite 400 Houston, TX 77032, USA T: +1 281-458-0400 F: +1 281-458-7809

Fulton Bellows, LLC 2801 Red Dog Lane Knoxville, TN 37914 T: +1 865-546-0550 F: +1 865-544-5125 **AmniTec Limited** Abercanaid, Merthyr Tydfil United Kingdom CF48 1UX T: +44 (0) 1685-354222 F: +44 (0) 1685-389683

AmniTec B.V Abraham van Stolkweg 118 3041 JA Rotterdam, The Netherlands T: +31 (0) 10 298 2121 F: +31 (0) 10 2982128

Habia Teknofluor AB SE-741 80 Knivsta, Sweden T: 46 (0) 18 34 75 00

www.unitedflexible.com